If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40u^2+59u-8=0
a = 40; b = 59; c = -8;
Δ = b2-4ac
Δ = 592-4·40·(-8)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-69}{2*40}=\frac{-128}{80} =-1+3/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+69}{2*40}=\frac{10}{80} =1/8 $
| 3(1)/(10)s=6(1)/(5) | | 15(x+2)=30 | | 6x-30+23=6x-6 | | 3^(x^2-12)=9^2x | | 7x-42+36=7x-6 | | 3x+15=4x+40 | | .5x-12=53+7x | | 5t^2-6t-11=0 | | 10/15=6/c | | 7(v+3)-3v=2(2v+4)-14 | | -(7)/(8)k=-21 | | 1.2(0.9)^x=0.6 | | 34s−94=s8+14 | | -(2)/(3)w=60 | | X(x-25)=116 | | k-11=6k+66 | | 6=(1)/(12)v | | 432154-c=23423534543153 | | 3*2^2x−29*2^2x=−40 | | 24d=16 | | 14=213w | | (3x-4)(4x-16)(3x+6)=180 | | X^2-2x+1=9/25 | | 3·22x−29·2x=−40 | | 100x^2+60x-19=0 | | x/3-4=19 | | 80=x/3+x/5 | | -16t^2+24t-9=0 | | y12=(-6) | | x-0.2x=199 | | (y-3)-4y=-3y-3 | | -11-13z-9=3(-8z+20)+19 |